Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation.

Identifieur interne : 001E87 ( Main/Exploration ); précédent : 001E86; suivant : 001E88

Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation.

Auteurs : Yurong Yang [République populaire de Chine] ; Yan Liang ; Amit Ghosh ; Yingying Song ; Hui Chen ; Ming Tang

Source :

RBID : pubmed:25929455

Descripteurs français

English descriptors

Abstract

To select suitable tree species associated with arbuscular mycorrhizal fungi (AMF) for phytoremediation of heavy metal (HM) contaminated area, we measured the AMF status and heavy metal accumulation in plant tissues in a lead-zinc mine area, Northwest China. All 15 tree species were colonized by AM fungi in our investigation. The mycorrhizal frequency (F%), mycorrhizal colonization intensity (M%) and spore density (SP) reduced concomitantly with increasing Pb and Zn levels; however, positive correlations were found between arbuscule density (A%) and soil total/DTPA-extractable Pb concentrations. The average concentrations of Pb, Zn, Cu and Cd in plant samples were 168.21, 96.61, 41.06, and 0.79 mg/kg, respectively. Populus purdomii Rehd. accumulated the highest concentrations of Zn (432.08 mg/kg) and Cu (140.85 mg/kg) in its leaves. Considerable amount of Pb (712.37 mg/kg) and Cd (3.86 mg/kg) were concentrated in the roots of Robinia pseudoacacia Linn. and Populus simonii Carr., respectively. Plants developed different strategies to survive in HM stress environment: translocating more essential metals (Zn and Cu) into the aerial parts, while retaining more toxic heavy metals (Pb and Cd) in the roots to protect the above-ground parts from damage. According to the translocation factor (TF), bioconcentration factor (BCF), growth rate and biomass production, five tree species (Ailanthus altissima (Mill.) Swingle, Cotinus coggygria Scop., P. simonii, P. purdomii, and R. pseudoacacia) were considered to be the most suitable candidates for phytoextraction and/or phytostabilization purposes. Redundancy analysis (RDA) showed that the efficiency of phytoremediation was enhanced by AM symbioses, and soil pH, Pb, Zn, and Cd levels were the main factors influencing the HM accumulation characteristics of plants.

DOI: 10.1007/s11356-015-4521-8
PubMed: 25929455


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation.</title>
<author>
<name sortKey="Yang, Yurong" sort="Yang, Yurong" uniqKey="Yang Y" first="Yurong" last="Yang">Yurong Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Xianyang, Shaanxi, 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Xianyang, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liang, Yan" sort="Liang, Yan" uniqKey="Liang Y" first="Yan" last="Liang">Yan Liang</name>
</author>
<author>
<name sortKey="Ghosh, Amit" sort="Ghosh, Amit" uniqKey="Ghosh A" first="Amit" last="Ghosh">Amit Ghosh</name>
</author>
<author>
<name sortKey="Song, Yingying" sort="Song, Yingying" uniqKey="Song Y" first="Yingying" last="Song">Yingying Song</name>
</author>
<author>
<name sortKey="Chen, Hui" sort="Chen, Hui" uniqKey="Chen H" first="Hui" last="Chen">Hui Chen</name>
</author>
<author>
<name sortKey="Tang, Ming" sort="Tang, Ming" uniqKey="Tang M" first="Ming" last="Tang">Ming Tang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25929455</idno>
<idno type="pmid">25929455</idno>
<idno type="doi">10.1007/s11356-015-4521-8</idno>
<idno type="wicri:Area/Main/Corpus">001D10</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001D10</idno>
<idno type="wicri:Area/Main/Curation">001D10</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001D10</idno>
<idno type="wicri:Area/Main/Exploration">001D10</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation.</title>
<author>
<name sortKey="Yang, Yurong" sort="Yang, Yurong" uniqKey="Yang Y" first="Yurong" last="Yang">Yurong Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Xianyang, Shaanxi, 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Xianyang, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liang, Yan" sort="Liang, Yan" uniqKey="Liang Y" first="Yan" last="Liang">Yan Liang</name>
</author>
<author>
<name sortKey="Ghosh, Amit" sort="Ghosh, Amit" uniqKey="Ghosh A" first="Amit" last="Ghosh">Amit Ghosh</name>
</author>
<author>
<name sortKey="Song, Yingying" sort="Song, Yingying" uniqKey="Song Y" first="Yingying" last="Song">Yingying Song</name>
</author>
<author>
<name sortKey="Chen, Hui" sort="Chen, Hui" uniqKey="Chen H" first="Hui" last="Chen">Hui Chen</name>
</author>
<author>
<name sortKey="Tang, Ming" sort="Tang, Ming" uniqKey="Tang M" first="Ming" last="Tang">Ming Tang</name>
</author>
</analytic>
<series>
<title level="j">Environmental science and pollution research international</title>
<idno type="eISSN">1614-7499</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodegradation, Environmental (MeSH)</term>
<term>Cadmium (analysis)</term>
<term>Cadmium (metabolism)</term>
<term>China (MeSH)</term>
<term>Copper (analysis)</term>
<term>Copper (metabolism)</term>
<term>Lead (analysis)</term>
<term>Lead (metabolism)</term>
<term>Mining (MeSH)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Populus (microbiology)</term>
<term>Soil (chemistry)</term>
<term>Soil Pollutants (analysis)</term>
<term>Soil Pollutants (metabolism)</term>
<term>Zinc (analysis)</term>
<term>Zinc (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cadmium (analyse)</term>
<term>Cadmium (métabolisme)</term>
<term>Chine (MeSH)</term>
<term>Cuivre (analyse)</term>
<term>Cuivre (métabolisme)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Mine (MeSH)</term>
<term>Mycorhizes (métabolisme)</term>
<term>Plomb (analyse)</term>
<term>Plomb (métabolisme)</term>
<term>Polluants du sol (analyse)</term>
<term>Polluants du sol (métabolisme)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (microbiologie)</term>
<term>Populus (métabolisme)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (microbiologie)</term>
<term>Racines de plante (métabolisme)</term>
<term>Sol (composition chimique)</term>
<term>Zinc (analyse)</term>
<term>Zinc (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Cadmium</term>
<term>Copper</term>
<term>Lead</term>
<term>Soil Pollutants</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cadmium</term>
<term>Copper</term>
<term>Lead</term>
<term>Soil Pollutants</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Cadmium</term>
<term>Cuivre</term>
<term>Plomb</term>
<term>Polluants du sol</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cadmium</term>
<term>Cuivre</term>
<term>Mycorhizes</term>
<term>Plomb</term>
<term>Polluants du sol</term>
<term>Populus</term>
<term>Racines de plante</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>China</term>
<term>Mining</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chine</term>
<term>Dépollution biologique de l'environnement</term>
<term>Mine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To select suitable tree species associated with arbuscular mycorrhizal fungi (AMF) for phytoremediation of heavy metal (HM) contaminated area, we measured the AMF status and heavy metal accumulation in plant tissues in a lead-zinc mine area, Northwest China. All 15 tree species were colonized by AM fungi in our investigation. The mycorrhizal frequency (F%), mycorrhizal colonization intensity (M%) and spore density (SP) reduced concomitantly with increasing Pb and Zn levels; however, positive correlations were found between arbuscule density (A%) and soil total/DTPA-extractable Pb concentrations. The average concentrations of Pb, Zn, Cu and Cd in plant samples were 168.21, 96.61, 41.06, and 0.79 mg/kg, respectively. Populus purdomii Rehd. accumulated the highest concentrations of Zn (432.08 mg/kg) and Cu (140.85 mg/kg) in its leaves. Considerable amount of Pb (712.37 mg/kg) and Cd (3.86 mg/kg) were concentrated in the roots of Robinia pseudoacacia Linn. and Populus simonii Carr., respectively. Plants developed different strategies to survive in HM stress environment: translocating more essential metals (Zn and Cu) into the aerial parts, while retaining more toxic heavy metals (Pb and Cd) in the roots to protect the above-ground parts from damage. According to the translocation factor (TF), bioconcentration factor (BCF), growth rate and biomass production, five tree species (Ailanthus altissima (Mill.) Swingle, Cotinus coggygria Scop., P. simonii, P. purdomii, and R. pseudoacacia) were considered to be the most suitable candidates for phytoextraction and/or phytostabilization purposes. Redundancy analysis (RDA) showed that the efficiency of phytoremediation was enhanced by AM symbioses, and soil pH, Pb, Zn, and Cd levels were the main factors influencing the HM accumulation characteristics of plants. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">25929455</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>03</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1614-7499</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>22</Volume>
<Issue>17</Issue>
<PubDate>
<Year>2015</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Environmental science and pollution research international</Title>
<ISOAbbreviation>Environ Sci Pollut Res Int</ISOAbbreviation>
</Journal>
<ArticleTitle>Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation.</ArticleTitle>
<Pagination>
<MedlinePgn>13179-93</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11356-015-4521-8</ELocationID>
<Abstract>
<AbstractText>To select suitable tree species associated with arbuscular mycorrhizal fungi (AMF) for phytoremediation of heavy metal (HM) contaminated area, we measured the AMF status and heavy metal accumulation in plant tissues in a lead-zinc mine area, Northwest China. All 15 tree species were colonized by AM fungi in our investigation. The mycorrhizal frequency (F%), mycorrhizal colonization intensity (M%) and spore density (SP) reduced concomitantly with increasing Pb and Zn levels; however, positive correlations were found between arbuscule density (A%) and soil total/DTPA-extractable Pb concentrations. The average concentrations of Pb, Zn, Cu and Cd in plant samples were 168.21, 96.61, 41.06, and 0.79 mg/kg, respectively. Populus purdomii Rehd. accumulated the highest concentrations of Zn (432.08 mg/kg) and Cu (140.85 mg/kg) in its leaves. Considerable amount of Pb (712.37 mg/kg) and Cd (3.86 mg/kg) were concentrated in the roots of Robinia pseudoacacia Linn. and Populus simonii Carr., respectively. Plants developed different strategies to survive in HM stress environment: translocating more essential metals (Zn and Cu) into the aerial parts, while retaining more toxic heavy metals (Pb and Cd) in the roots to protect the above-ground parts from damage. According to the translocation factor (TF), bioconcentration factor (BCF), growth rate and biomass production, five tree species (Ailanthus altissima (Mill.) Swingle, Cotinus coggygria Scop., P. simonii, P. purdomii, and R. pseudoacacia) were considered to be the most suitable candidates for phytoextraction and/or phytostabilization purposes. Redundancy analysis (RDA) showed that the efficiency of phytoremediation was enhanced by AM symbioses, and soil pH, Pb, Zn, and Cd levels were the main factors influencing the HM accumulation characteristics of plants. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Yurong</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Xianyang, Shaanxi, 712100, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liang</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ghosh</LastName>
<ForeName>Amit</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Yingying</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Hui</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Ming</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>05</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Environ Sci Pollut Res Int</MedlineTA>
<NlmUniqueID>9441769</NlmUniqueID>
<ISSNLinking>0944-1344</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2P299V784P</RegistryNumber>
<NameOfSubstance UI="D007854">Lead</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>789U1901C5</RegistryNumber>
<NameOfSubstance UI="D003300">Copper</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>J41CSQ7QDS</RegistryNumber>
<NameOfSubstance UI="D015032">Zinc</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="N">Cadmium</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N">China</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003300" MajorTopicYN="N">Copper</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007854" MajorTopicYN="N">Lead</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008906" MajorTopicYN="N">Mining</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015032" MajorTopicYN="N">Zinc</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>12</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>04</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25929455</ArticleId>
<ArticleId IdType="doi">10.1007/s11356-015-4521-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2015 Feb;22(3):2087-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25167810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2005 Jul;60(5):665-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15963805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2011 Jan;159(1):84-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20952112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2013 May;91(7):869-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23466085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2011 Nov-Dec;29(6):645-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21557996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2011 Sep;13(8):788-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21972519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2007 Jan 09;36(1):245-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17215233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2012 Oct 1;435-436:453-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22885351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2003;126(2):179-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 May;223(6):1115-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16555102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Feb;101(3):859-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19773154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Sci Health A Tox Hazard Subst Environ Eng. 2006;41(1):65-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16401571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2011 Feb 15;409(6):1069-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21195456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Monit Assess. 2014 Mar;186(3):1735-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24249249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2010 Jan;71(1):94-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19845764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2006 Sep 15;368(2-3):456-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16600337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2015 Feb;22(4):2765-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25205156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2009 Apr 30;163(2-3):563-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18692313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Jul 1;12(4):563-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20636898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2005;56:15-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2014 Jun;21(12):7403-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24584643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2015 Jan;22(1):574-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25091165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2006 Nov;144(2):669-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16616404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Sci (China). 2012;24(3):410-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22655353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2003 Feb;50(6):839-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12688500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2007 Feb;145(3):691-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16905229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2001 Nov-Dec;30(6):1919-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11789997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2010 Aug;158(8):2757-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20546984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2015 Feb;22(3):1931-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25269838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2012 Feb;76(2):209-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22018546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Geochem Health. 2005 Apr;27(2):109-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16003579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2005 Jun;6(6):497-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15940279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 1995;87(1):51-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15091607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2007 May;147(1):168-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17014941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Int. 2005 Jul;31(5):755-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15910971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2014 Jul 15;487:313-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24793328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Feb;65(2):718-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9925606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2013 Oct;20(10):7194-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23681772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Int. 2003 Jul;29(4):529-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12705950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sensors (Basel). 2008 Apr 04;8(4):2413-2423</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27879826</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Hui" sort="Chen, Hui" uniqKey="Chen H" first="Hui" last="Chen">Hui Chen</name>
<name sortKey="Ghosh, Amit" sort="Ghosh, Amit" uniqKey="Ghosh A" first="Amit" last="Ghosh">Amit Ghosh</name>
<name sortKey="Liang, Yan" sort="Liang, Yan" uniqKey="Liang Y" first="Yan" last="Liang">Yan Liang</name>
<name sortKey="Song, Yingying" sort="Song, Yingying" uniqKey="Song Y" first="Yingying" last="Song">Yingying Song</name>
<name sortKey="Tang, Ming" sort="Tang, Ming" uniqKey="Tang M" first="Ming" last="Tang">Ming Tang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Yang, Yurong" sort="Yang, Yurong" uniqKey="Yang Y" first="Yurong" last="Yang">Yurong Yang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E87 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001E87 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25929455
   |texte=   Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25929455" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020